INDIAN ARMED FORCES CHIEFS ON
OUR RELENTLESS AND FOCUSED PUBLISHING EFFORTS

 
SP Guide Publications puts forth a well compiled articulation of issues, pursuits and accomplishments of the Indian Army, over the years

— General Manoj Pande, Indian Army Chief

 
 
I am confident that SP Guide Publications would continue to inform, inspire and influence.

— Admiral R. Hari Kumar, Indian Navy Chief

My compliments to SP Guide Publications for informative and credible reportage on contemporary aerospace issues over the past six decades.

— Air Chief Marshal V.R. Chaudhari, Indian Air Force Chief
       

Army lab finding efficient ways to convert JP-8 to hydrogen for fuel cells for portable electric power in the field

Issue No. 20 | October 16-31, 2013

What if soldiers could convert JP-8 to clean hydrogen fuel for fuel cell applications anywhere and anytime they need it?

A small team of scientists at the US Army Research Laboratory (ARL) are collaborating with counterparts at the Communications-Electronics and the Tank Automotive Research, Development and Engineering Centers to develop technology for lightweight, portable prototype systems that would convert JP-8 to Hydrogen on the spot.

“There is a growing demand for portable electrical power for both commercial and military applications,” said Dr. Deryn Chu, fuel cell team leader. “Our challenge is How can we remove the many impurities in JP-8 so it can be effective in a fuel cell?”

JP-8 is widely used by the US Army as a fuel for powering aircraft, engines of tactical ground vehicles and electrical generators. It comes with a set of problems like the logistics resupply chain it requires, and the high cost associated with force protection of convoys, he said.

The Pentagon’s most-used jet fuel costs roughly $15 per gallon, but “the cost multiplies to hundreds of dollars by the time you move it to and around operational locations,” Chu said.

For the Army “the smallest gain in efficiency is important. But fuel cells when the concept is fully developed may yield huge gains, potentially doubling the efficiency of diesel generators,” he said.

The chance for a game-changing technology is why fuel reformation is one of three high-risk, high-reward projects that the laboratory is pushing toward in search of operational energy solutions for the battlefield. Smart Battlefield Energy on-Demand and Long-Lived Power were also highlighted in this four-part series.

Researchers already knew the value of fuel cells for increasing efficiency, as that kind of approach has been explored since the 1960s. They also knew of ways to convert the high-energy density of hydrocarbons into hydrogen for fuel cells like the process that Bloom Energy and others use on the commercial market, said Dr. Zachary Dunbar, a team member who is exploring palladium membrane technology, using a rare metallic element as part of a purification system.

The challenge is developing a practical fuel reformation process for better energy conversion that would have to be portable, quick and easy to use, he said.

Last year, ARL’s research reached a milestone when they figured out a way to reduce the production costs associated with fuel reformation by using palladium membranes to purify hydrogen rich reformate, Dunbar said.

In their work, scientists developed a new supported palladium membrane composite structure for purification technology to produce high-purity hydrogen from a feedstock of hydrocarbon fuel. Before this discovery, designing affordable, leak free, and high-flux membranes was much more difficult, he said.

“While it is a significant milestone, the research is in its early stages. Fuel reforming is a complex problem that we don’t expect to solve quickly,” Dunbar said.

“JP-8 is a complicated and dirty fuel. The sulfur is a huge problem because it can hurt the fuel cells,” Tran said. “Sulfur has many different compounds that behave differently. The compounds in sulfur make it hard to find an agreeable material.”

JP-8 is a logictical fuel for the Department of Defense under its one-fuel policy. It is a unique problem for the Army. Industry is focused on natural gas, Chu said.

The US Army Research, Development and Engineering Command’s Communications-Electronics Center (CERDEC), Command, Power and Integration (CP&I) experts are integral to the research because they transition mobile power systems from the lab to the field, said Dr. Terry Dubois, fuel reforming and combustion engineer at CERDEC.

Everything from man-worn to multikilowatt systems comes through CERDEC, he said. CERDEC CP&I enables the quick transition of optimum capabilities to the Warfighter in support of ongoing operations.

Army units often wind up in places overseas with no infrastructure and limited supplies. We need to explore and develop highefficient fuel cell systems to reduce logistical supply. Scientists continue to grapple with the question of the best way to rid JP-8 of its organic sulfur compounds after it is in theatre, Chu said.

Fuel reforming for better energy conversion on the battlefield is the fourth and last article in a series of four stories about the US Army Research Laboratory’s far-reaching concepts for Army operational energy. Scientists and engineers at the US Army Research Laboratory forecast energy solutions into the future with a portfolio of basic and applied science.