INDIAN ARMED FORCES CHIEFS ON
OUR RELENTLESS AND FOCUSED PUBLISHING EFFORTS

 
SP Guide Publications puts forth a well compiled articulation of issues, pursuits and accomplishments of the Indian Army, over the years

— General Manoj Pande, Indian Army Chief

 
 
I am confident that SP Guide Publications would continue to inform, inspire and influence.

— Admiral R. Hari Kumar, Indian Navy Chief

My compliments to SP Guide Publications for informative and credible reportage on contemporary aerospace issues over the past six decades.

— Air Chief Marshal V.R. Chaudhari, Indian Air Force Chief
       

Upward falling payloads programme advances deep-sea technology

Issue No. 7 | April 01-15, 2014Photo(s): By DARPA

New phase aims to merge payloads with protective containers that lie on the deepocean floor for years and recall them for use on demand.

Cost and complexity limit the number of ships and weapon systems the Navy can support in forward operating areas. A natural response is to offset these costs and risks with unmanned and distributed systems. But how do such systems get there in the first place?

The Defense Advanced Research Projects Agency’s (DARPA) upward falling payloads (UFP) programme, which intends to address these challenges, centres on developing deployable, unmanned, nonlethal distributed systems that would lie on the deep-ocean floor in special containers for years at a time. US forces could remotely activate these deep-sea resources from remote command centres, and recall them to the surface when needed. In other words, they would “fall upward.” The programme is completing its first phase and is about to enter its second.

During Phase 1, DARPA supported more than 10 study and design efforts to figure out approaches for long-range communications, deep-ocean high-pressure containment, and payload launch. The study teams also addressed a variety of missions for the payloads.

“In this first phase, we really learned about how the pieces come together, and built a community of developers to think differently about unmanned distributed solutions for the maritime domain,” said Andy Coon, DARPA Program Manager.

“The trick is to show how these systems offer lowercost alternatives to traditional approaches, and that they scale well to large open-ocean areas,” said Coon.

In the next Phase, DARPA intends to learn from the studies, and develop and demonstrate prototype systems. DARPA is seeking teams to develop UFP nodes that combine expertise in both deep-ocean engineering and advanced payload development.

“We’re also looking for the communications technologies for these nodes. As long as you can command the nodes remotely and quickly, and don’t have to send a ship out to launch it, you’re in good shape. Some Phase 1 approaches were more exotic than others, but we were pleased by the range of challenging options,” said Coon.

In today’s fiscally constrained environment, such a system of prepositioned, deep-sea nodes could provide a full range of maritime mission sets that are more cost-effective than existing manned or long-range unmanned naval assets.

For Phase 2, DARPA is particularly looking for technology communities that can team to provide expertise and innovation for small sensors, expendable and small unmanned systems, distributed communications and navigation technology, novel long-range underwater communications, and long-endurance mechanical and electrical systems that can survive for years in dormant states.